MBI Videos

Brian Carlson

  • video photo
    Brian Carlson

    The vasculature dynamically responds to a myriad of acute signals reflecting local mechanical conditions, concentrations of neurohumoral substances and metabolic demand in the downstream tissue. The most well known of these mechanisms is the local response of vessels to their intraluminal pressure otherwise know as the myogenic response. Other mechanisms are more global in nature such as the delivery of norepinephrine through sympathetic enervation. In concert with these stimuli we have the conducted response, which is a mechanism acting remotely to convey metabolic state of the downstream tissue to the upstream supply vessels. The common thread of all these regulatory response mechanisms is that the end effectors are the circumferentially oriented vascular smooth muscle cells in the vessel wall that control the dilation and constriction of the vessel.


    This talk will present several theoretical models of mechanisms of blood flow regulation some developed at cell level and some at single vessel level resolution, show how these model can be defined from experimental data and then describe how these theoretical models may be utilized in comprehensive models of the cardiovascular system.


View Videos By